Author
Listed:
- Martin Stølevik
(SINTEF ICT, Applied Mathematics)
- Geir Hasle
(SINTEF ICT, Applied Mathematics)
- Oddvar Kloster
(SINTEF ICT, Applied Mathematics)
Abstract
The Long-Term Forest Treatment Scheduling Problem (LTFTSP) is the task of allocating treatments in a forest such that both sustainability and economic outcome is maximized. Solving such problems is demanded in more and more countries and the task is increasingly more complex because one must adhere to local legislation, environmental issues, and public interests. To be able to handle most aspects of the LTFTSP with adjacency constraints (which is the problem we solve), a rich, spatial model which is parameterized, is required. We present a model defined on discrete land units and time points, where the treatments to perform are parameterized. Many of the most commonly used criteria in the form of constraints and objective components in long-term forestry scheduling are included. Such criteria may be defined for the complete forest region in question, or for specific sub-regions. The complexity of the model requires a robust solution method. We have selected a heuristic approach based on Tabu Search. An initial solution is constructed by composition of economically optimal schedules for each land unit. This solution is made feasible by a greedy heuristic. The initial solution is iteratively improved by Tabu Search. Two different types of move are used in the Tabu Search procedure: Shifting a treatment to another time point, and exchanging one treatment program for another treatment program. The solution method is implemented in the software tool Ecoplan. Empirical results have been produced for a 1,541 stand case from Norway. The results show that when more than one objective is included in the objective function, the quality of the solution with respect to the individual objectives may be considerably reduced. Some of the quality loss, especially with regards to the “old forest” objective component may be explained by the initial state of the forest.
Suggested Citation
Martin Stølevik & Geir Hasle & Oddvar Kloster, 2007.
"Solving the Long-Term Forest Treatment Scheduling Problem,"
Springer Books, in: Geir Hasle & Knut-Andreas Lie & Ewald Quak (ed.), Geometric Modelling, Numerical Simulation, and Optimization, pages 437-473,
Springer.
Handle:
RePEc:spr:sprchp:978-3-540-68783-2_13
DOI: 10.1007/978-3-540-68783-2_13
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-68783-2_13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.