IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-47641-2_52.html
   My bibliography  Save this book chapter

Models for Highway Traffic and Their Connections to Thermodynamics

In: Traffic and Granular Flow’05

Author

Listed:
  • Hans Weber

    (Luleå University of Technology, Department of Physics)

  • Reinhard Mahnke

    (Rostock University, Institute of Physics)

  • Jevgenijs Kaupužs

    (University of Latvia, Institute of Mathematics and Computer Science)

  • Anders Strömberg

    (Luleå University of Technology, Department of Physics)

Abstract

Summary Models for highway traffic are studied by numerical simulations. Of special interest is the spontaneous formation of traffic jams. In a thermodynamic system the traffic jam would correspond to the dense phase (liquid) and the free flowing traffic would correspond to the gas phase. Both phases depending on the density of cars can be present at the same time. A model for a single lane circular road has been studied. The model is called the optimal velocity model (OVM) and was developed by Bando, Sugiyama, et al. We propose here a reformulation of the OVM into a description in terms of potential energy functions forming a kind of Hamiltonian for the system. This will however not be a globally defined Hamiltonian but a locally defined one as it is a dynamical model. The model defined by this Hamiltonian will be suitable for Monte Carlo simulations.

Suggested Citation

  • Hans Weber & Reinhard Mahnke & Jevgenijs Kaupužs & Anders Strömberg, 2007. "Models for Highway Traffic and Their Connections to Thermodynamics," Springer Books, in: Andreas Schadschneider & Thorsten Pöschel & Reinhart Kühne & Michael Schreckenberg & Dietrich E. Wol (ed.), Traffic and Granular Flow’05, pages 545-550, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-47641-2_52
    DOI: 10.1007/978-3-540-47641-2_52
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-47641-2_52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.