IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-32691-5_7.html
   My bibliography  Save this book chapter

Identifying Coexpressed Genes

In: Statistical Methods for Biostatistics and Related Fields

Author

Listed:
  • Qihua Wang

Abstract

Some gene expression data contain outliers and noise because of experiment error. In clustering, outliers and noise can result in false positives and false negatives. This motivates us to develop a weighting method to adjust the expression data such that the outlier and noise effect decrease, and hence result in a reduction in false positives and false negatives in clustering. In this paper, we describe the weighting adjustment method and apply it to a yeast cell cycle data set. Based on the adjusted yeast cell cycle expression data, the hierarchical clustering method with a correlation coefficient measure performs better than that based on standardized expression data. The clustering method based on the adjusted data can group some functionally related genes together and yields higher quality clusters.

Suggested Citation

  • Qihua Wang, 2007. "Identifying Coexpressed Genes," Springer Books, in: Statistical Methods for Biostatistics and Related Fields, chapter 7, pages 125-145, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-32691-5_7
    DOI: 10.1007/978-3-540-32691-5_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-32691-5_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.