IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-27907-5_18.html
   My bibliography  Save this book chapter

Flexible Flame Structure Modelling in a Flame Front Tracking Scheme

In: Analysis and Numerics for Conservation Laws

Author

Listed:
  • Heiko Schmidt

    (École Centrale Paris et C.N.R.S., Laboratoire EM2C)

  • Rupert Klein

    (Freie Universität Berlin, Fachbereich Mathematik and Informatik)

Abstract

Summary A numerical technique for the simulation of accelerating turbulent premixed flames in large scale geometries is presented. It is based on a hybrid capturing/tracking method. It resembles a tracking scheme in that the front geometry is explicitly computed and propagated using a level set method. The basic flow properties are provided by solving the reactive Euler equations. The flame-flow-coupling is achieved by an in-cell-reconstruction technique, i.e., in cells cut by the flame the discontinuous solution is reconstructed from given cell-averages by applying Rankine-Hugoniot type jump conditions. Then the reconstructed states and again the front geometry are used to define accurate effective numerical fluxes across grid cell interfaces intersected by the front during the time step considered. Hence the scheme also resembles a capturing scheme in that only cell averages of conserved quantities are updated. To enable the modelling of inherently unsteady effects, like quenching, reignition, etc., during flame acceleration, the new key idea is to provide a local, quasi-onedimensional flame structure model and to extend the Rankine-Hugoniot conditions so as to allow for inherently unsteady flame structure evolution. A source term appearing in the modified jump conditions is computed by evaluating a suitable functional on the basis of a onedimensional flame structure module, that is attached in normal direction to the flame front. This module additionally yields quantities like the net mass burning rate, necessary for the propagation of the level set, and the specific heat release important for the energy release due to the consumption of fuel. Generally the local flame structure calculation takes into account internal (small scale) physical effects which are not active in the (large scale) outer flow but essential for the front motion and its feedback on the surrounding fluid. If a suitable set of different (turbulent) combustion models to compute the flame structure is provided, the new numerical technique allows us to consistently represent laminar deflagrations, fast turbulent deflagrations as well as detonation waves. Supplemented with suitable criteria that capture the essence of a Deflagration-to-Detonation-Transition (DDT), the complete evolution of such an event can be implemented in principle.

Suggested Citation

  • Heiko Schmidt & Rupert Klein, 2005. "Flexible Flame Structure Modelling in a Flame Front Tracking Scheme," Springer Books, in: Gerald Warnecke (ed.), Analysis and Numerics for Conservation Laws, pages 405-427, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-27907-5_18
    DOI: 10.1007/3-540-27907-5_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-27907-5_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.