Author
Listed:
- T. Hillen
(University of Alberta, Mathematical and Statistical Sciences)
- K.P. Hadeler
(University of Tübingen, Biomathematik)
Abstract
Summary The standard models for groups of interacting and moving individuals (from cell biology to vertebrate population dynamics) are reaction-diffusion models. They base on Brownian motion, which is characterized by one single parameter (diffusion coefficient). In particular for moving bacteria and (slime mold) amoebae, detailed information on individual movement behavior is available (speed, run times, turn angle distributions). If such information is entered into models for populations, then reaction-transport equations or hyperbolic equations (telegraph equations, damped wave equations) result. The goal of this review is to present some basic applications of transport equations and hyperbolic systems and to illustrate the connections between transport equations, hyperbolic models, and reaction-diffusion equations. Applied to chemosensitive movement (chemotaxis) functional estimates for the nonlinearities in the classical chemotaxis model (Patlak-Keller-Segel) can be derived, based on the individual behavior of cells and attractants. A detailed review is given on two methods of reduction for transport equations. First the construction of parabolic limits (diffusion limits) for linear and non-linear transport equations and then a moment closure method based on energy minimization principles. We illustrate the moment closure method on the lowest non-trivial case (two-moment closure), which leads to Cattaneo systems. Moreover we study coupled dynamical systems and models with quiescent states. These occur naturally if it is assumed that different processes, like movement and reproduction, do not occur simultaneously. We report on travelling front problems, stability, epidemic modeling, and transport equations with resting phases.
Suggested Citation
T. Hillen & K.P. Hadeler, 2005.
"Hyperbolic Systems and Transport Equations in Mathematical Biology,"
Springer Books, in: Gerald Warnecke (ed.), Analysis and Numerics for Conservation Laws, pages 257-279,
Springer.
Handle:
RePEc:spr:sprchp:978-3-540-27907-5_11
DOI: 10.1007/3-540-27907-5_11
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-27907-5_11. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.