IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-27157-4_8.html
   My bibliography  Save this book chapter

Numerical and Algebraic Properties of Bernstein Basis Resultant Matrices

In: Computational Methods for Algebraic Spline Surfaces

Author

Listed:
  • Joab R. Winkler

    (Sheffield University)

Abstract

Algebraic properties of the power and Bernstein forms of the companion, Sylvester and Bézout resultant matrices are compared and it is shown that some properties of the power basis form of these matrices are not shared by their Bernstein basis equivalents because of the combinatorial factors in the Bernstein basis functions. Several condition numbers of a resultant matrix are considered and it is shown that the most refined measure is NP-hard, and that a simpler, sub-optimal measure is easily computed. The transformation of the companion and Bézout resultant matrices between the power and Bernstein bases is considered numerically and algebraically. In particular, it is shown that these transformations are ill—conditioned, even for polynomials of low degree, and that the matrices that occur in these basis transformation equations share some properties.

Suggested Citation

  • Joab R. Winkler, 2005. "Numerical and Algebraic Properties of Bernstein Basis Resultant Matrices," Springer Books, in: Computational Methods for Algebraic Spline Surfaces, chapter 8, pages 107-118, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-27157-4_8
    DOI: 10.1007/3-540-27157-0_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-27157-4_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.