IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-27110-9_8.html
   My bibliography  Save this book chapter

The Parabolic Anderson Model

In: Interacting Stochastic Systems

Author

Listed:
  • Jürgen Gärtner

    (Technische Universität Berlin, Institut für Mathematik, MA7-5)

  • Wolfgang König

    (Technische Universität Berlin, Institut für Mathematik, MA7-5)

Abstract

Summary This is a survey on the intermittent behavior of the parabolic Anderson model, which is the Cauchy problem for the heat equation with random potential on the lattice ℤd. We first introduce the model and give heuristic explanations of the long-time behavior of the solution, both in the annealed and the quenched setting for time-independent potentials. We thereby consider examples of potentials studied in the literature. In the particularly important case of an i.i.d. potential with double-exponential tails we formulate the asymptotic results in detail. Furthermore, we explain that, under mild regularity assumptions, there are only four different universality classes of asymptotic behaviors. Finally, we study the moment Lyapunov exponents for space-time homogeneous catalytic potentials generated by a Poisson field of random walks.

Suggested Citation

  • Jürgen Gärtner & Wolfgang König, 2005. "The Parabolic Anderson Model," Springer Books, in: Jean-Dominique Deuschel & Andreas Greven (ed.), Interacting Stochastic Systems, pages 153-179, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-27110-9_8
    DOI: 10.1007/3-540-27110-4_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-27110-9_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.