IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-322-91598-6_16.html
   My bibliography  Save this book chapter

Primzahlen, geheime Codes und die Grenzen der Berechenbarkeit

In: Alles Mathematik

Author

Listed:
  • Martin Aigner

Abstract

Zusammenfassung Die Primzahlen gehören zu jenen mathematischen Objekten, welche seit jeher alle mathematisch Interessierten fasziniert haben. Jede Zahl setzt sich aus Primzahlen zusammen, die Primzahlen sind also sozusagen die Atome des Zahlensystems, mit dem alle Mathematik beginnt. Umso erstaunlicher mutet es an, dass einige der ältesten Primzahlprobleme trotz größter Bemühungen von Generationen von Mathematikern bis heute ungelöst sind. Es gibt aber noch einen weiteren, nicht weniger erstaunlichen Aspekt. Die Zahlentheorie galt jahrhundertelang neben der Euklidischen Geometrie als das klassische Modell der reinen Mathematik: ein theoretisches Gebäude voller Schönheit und Eleganz, ein Kunstwerk des menschlichen Geistes. Seit etwa 20 Jahren hat sich dies geändert: Die Primzahlen sind auch in das Zentrum der Anwendungen gerückt. Sie spielen, wie wir sehen werden, eine entscheidende Rolle bei geheimen Codes, die heute aus unserem „codierten“ Leben nicht mehr wegzudenken sind. Und schließlich führen Primzahlen geradewegs zu einer der wichtigsten Fragen im Zeitalter der Informationstechnik: Was können Computer, bzw. wo liegen prinzipiell die Grenzen der Berechenbarkeit? Über diese drei Teile, wie im Titel angekündigt, wollen wir uns im Folgenden unterhalten.

Suggested Citation

  • Martin Aigner, 2002. "Primzahlen, geheime Codes und die Grenzen der Berechenbarkeit," Springer Books, in: Martin Aigner & Ehrhard Behrends (ed.), Alles Mathematik, edition 2, pages 229-237, Springer.
  • Handle: RePEc:spr:sprchp:978-3-322-91598-6_16
    DOI: 10.1007/978-3-322-91598-6_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-322-91598-6_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.