IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-96827-8_24.html
   My bibliography  Save this book chapter

The Metric Structure of Linear Codes

In: Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics

Author

Listed:
  • Diego Ruano

    (University of Valladolid, IMUVA (Mathematics Research Institute)
    Aalborg University, Department of Mathematical Sciences)

Abstract

The bilinear form with associated identity matrix is used in coding theory to define the dual code of a linear code, also it endows linear codes with a metric space structure. This metric structure was studied for generalized toric codes and a characteristic decomposition was obtained, which led to several applications as the construction of stabilizer quantum codes and LCD codes. In this work, we use the study of bilinear forms over a finite field to give a decomposition of an arbitrary linear code similar to the one obtained for generalized toric codes. Such a decomposition, called the geometric decomposition of a linear code, can be obtained in a constructive way; it allows us to express easily the dual code of a linear code and provides a method to construct stabilizer quantum codes, LCD codes and in some cases, a method to estimate their minimum distance. The proofs for characteristic 2 are different, but they are developed in parallel.

Suggested Citation

  • Diego Ruano, 2018. "The Metric Structure of Linear Codes," Springer Books, in: Gert-Martin Greuel & Luis Narváez Macarro & Sebastià Xambó-Descamps (ed.), Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, pages 537-561, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-96827-8_24
    DOI: 10.1007/978-3-319-96827-8_24
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-96827-8_24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.