IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-89824-7_47.html
   My bibliography  Save this book chapter

Statistical Learning Algorithms to Forecast the Equity Risk Premium in the European Union

In: Mathematical and Statistical Methods for Actuarial Sciences and Finance

Author

Listed:
  • David Cortés-Sánchez

    (Universitat de Valencia)

  • Pilar Soriano-Felipe

    (Universitat de Valencia)

Abstract

With the explosion of “Big Data”, the application of statistical learning models has become popular in multiple scientific areas as well as in marketing, finance or other business disciplines. Nonetheless, there is not yet an abundant literature that covers the application of these learning algorithms to forecast the equity risk premium. In this paper we investigate whether Classification and Regression Trees (CART) algorithms and several ensemble methods, such as bagging, random forests and boosting, improve traditional parametric models to forecast the equity risk premium. In particular, we work with European Monetary Union data for a period that spans from the EMU foundation at the beginning of 2000 to half of 2017. The paper first compares monthly out-of-sample forecasting ability of multiple economic and technical variables using linear regression models and regression trees techniques. To check the out-of-sample accuracy, predictive regressions are compared to a popular benchmark in the literature: the historical mean average. Forecasts performance is analyzed in terms of the Campbell and Thompson R-squared (R2 OS), which compares the MSFE of regressions constructed with selected predictors, against the MSFE of the benchmark.

Suggested Citation

  • David Cortés-Sánchez & Pilar Soriano-Felipe, 2018. "Statistical Learning Algorithms to Forecast the Equity Risk Premium in the European Union," Springer Books, in: Marco Corazza & María Durbán & Aurea Grané & Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods for Actuarial Sciences and Finance, pages 259-265, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-89824-7_47
    DOI: 10.1007/978-3-319-89824-7_47
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-89824-7_47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.