IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-89824-7_30.html
   My bibliography  Save this book chapter

Logistic Classification for New Policyholders Taking into Account Prediction Error

In: Mathematical and Statistical Methods for Actuarial Sciences and Finance

Author

Listed:
  • Eva Boj

    (University of Barcelona, Department of Mathematics for Economics, Finance and Actuarial Sciences, Faculty of Economics and Business)

  • Teresa Costa

    (University of Barcelona, Department of Mathematics for Economics, Finance and Actuarial Sciences, Faculty of Economics and Business)

Abstract

An expression of the mean squared error, MSE, of prediction for new observations when using logistic regression is showed. First, MSE is approximated by the sum of the process variance and of the estimation variance. The estimation variance can be estimated by applying the delta method and/or by using bootstrap methodology. When using bootstrap, e.g. bootstrap residuals, it is possible to obtain an estimation of the distribution for each predicted value. Confidence intervals can be calculated taking into account the bootstrapped distributions of the predicted new values to help us in the knowledge of their randomness. The general formulas of prediction error (the square root of MSE of prediction), PE, in the cases of the power family of error distributions and of the power family of link functions for generalized linear models were obtained in previous works. Now, the expression of the MSE of prediction for the generalized linear model with Binomial error distribution and logit link function, the logistic regression, is obtained. Its calculus and usefulness are illustrated with real data to solve the problem of Credit Scoring, where policyholders are classified into defaulters and non-defaulters.

Suggested Citation

  • Eva Boj & Teresa Costa, 2018. "Logistic Classification for New Policyholders Taking into Account Prediction Error," Springer Books, in: Marco Corazza & María Durbán & Aurea Grané & Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods for Actuarial Sciences and Finance, pages 161-165, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-89824-7_30
    DOI: 10.1007/978-3-319-89824-7_30
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-89824-7_30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.