IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-77219-6_2.html
   My bibliography  Save this book chapter

A Continuous-Time Approach to Intensive Longitudinal Data: What, Why, and How?

In: Continuous Time Modeling in the Behavioral and Related Sciences

Author

Listed:
  • Oisín Ryan

    (Utrecht University, Department of Methodology and Statistics, Faculty of Social and Behavioural Sciences)

  • Rebecca M. Kuiper

    (Utrecht University, Department of Methodology and Statistics, Faculty of Social and Behavioural Sciences)

  • Ellen L. Hamaker

    (Utrecht University, Department of Methodology and Statistics, Faculty of Social and Behavioural Sciences)

Abstract

The aim of this chapter is to (a) provide a broad didactical treatment of the first-order stochastic differential equation model—also known as the continuous-time (CT) first-order vector autoregressive (VAR(1)) model—and (b) argue for and illustrate the potential of this model for the study of psychological processes using intensive longitudinal data. We begin by describing what the CT-VAR(1) model is and how it relates to the more commonly used discrete-time VAR(1) model. Assuming no prior knowledge on the part of the reader, we introduce important concepts for the analysis of dynamic systems, such as stability and fixed points. In addition we examine why applied researchers should take a continuous-time approach to psychological phenomena, focusing on both the practical and conceptual benefits of this approach. Finally, we elucidate how researchers can interpret CT models, describing the direct interpretation of CT model parameters as well as tools such as impulse response functions, vector fields, and lagged parameter plots. To illustrate this methodology, we reanalyze a single-subject experience-sampling dataset with the R package ctsem; for didactical purposes, R code for this analysis is included, and the dataset itself is publicly available.

Suggested Citation

  • Oisín Ryan & Rebecca M. Kuiper & Ellen L. Hamaker, 2018. "A Continuous-Time Approach to Intensive Longitudinal Data: What, Why, and How?," Springer Books, in: Kees van Montfort & Johan H. L. Oud & Manuel C. Voelkle (ed.), Continuous Time Modeling in the Behavioral and Related Sciences, chapter 0, pages 27-54, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-77219-6_2
    DOI: 10.1007/978-3-319-77219-6_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-77219-6_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.