IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-76042-1_1.html
   My bibliography  Save this book chapter

Continuous Distributions

In: Probability Distributions

Author

Listed:
  • Nick T. Thomopoulos

    (Illinois Institute of Technology, Stuart School of Business)

Abstract

A variable, x, is continuous when x can be any number between two limits. For example, a scale measures a boy at 150 pounds; and assuming the scale is correct within one-half pound, the boy’s actual weight is a continuous variable that could fall anywhere from 149.5 to 150.5 pounds. The variable, x, is a continuous random variable when a mathematical function, called the probability density defines the shape along the admissible range. The density is always zero or larger and the positive area below the density equals one. Each unique continuous random variable is defined by a probability density that flows over the admissible range. Eight of the common continuous distributions are described in the chapter. For each of these, the range of the variable is stated, along with the probability density, and the associated parameters. Also described is the cumulative probability distribution that is needed by an analyst to measure the probability of the x falling in a sub-range of the admissible region. Some of the distributions do not have closed-form solutions, and thereby, quantitative methods are needed to measure the cumulative probability. Sample data is used to estimate the parameter values. Examples are included to demonstrate the features and use of each distribution. The distributions described in this chapter are the following: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal and lognormal. The continuous uniform occurs when all values between limits a to b are equally likely. The normal density is symmetrical and bell shaped. The exponential happens when the most likely value is at x = 0, and the density tails down in a relative way as x increases. The density of the Erlang has many shapes that range between the exponential and the normal. The shape of the gamma density varies from exponential-like to one where the mode (most likely) and the density skews to the right. The beta has many shapes: uniform, ramp down, ramp up, bathtub-like, normal-like, and all shapes that skew to the right and in the same manner they skew to the left. The Weibull density varies from exponential-like to shapes that skew to the right. The lognormal density peaks near zero and skews far to the right.

Suggested Citation

  • Nick T. Thomopoulos, 2018. "Continuous Distributions," Springer Books, in: Probability Distributions, chapter 0, pages 1-25, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-76042-1_1
    DOI: 10.1007/978-3-319-76042-1_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-76042-1_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.