Author
Listed:
- Miao Jin
(University of Louisiana, Centre for Advanced Computer Studies)
- Xianfeng Gu
(State University of New York)
- Ying He
(Nanyang Technological University, School of Computer Science and Engineering)
- Yalin Wang
(Arizona State University, School of Computing, Informatics and Decision Systems Engineering)
Abstract
In this chapter, we apply computational conformal geometry to construct manifold splines. We show that manifold splines afford a general theoretical and computational framework for modeling geometrically complicated surfaces of arbitrary topology. The technical challenge is how to extend polynomial-centric splines defined over open, planar domains to that over any manifold setting. Our solution is an affine structure for any manifold surface, serving as a parametric domain, so that piecewise spline functions can be naturally and elegantly blended to represent geometric shapes of arbitrary topology. Built upon our prior efforts, the primary foci are to broaden and strengthen the theoretical foundation as well as to devise practical algorithms for manifold splines. In particular, we advocate several novel mathematical tools to compute affine atlas for any domain manifold. At the theoretic level, we show that the lower bound of the number of singularities for surfaces with non-zero Euler number is one. We make use of discrete Ricci flow to actually reach this lower bound for manifold spline construction. At the practical level, we further relax this rather strict requirement by allowing users to control the number and positions of singular points. As a result, we construct polycube splines as a novel variant of manifold splines. Our computational tool is polycube maps, which can reduce both the area and angle distortion in the affine atlas. In order to demonstrate the general feasibility and efficiency of manifold splines, we design algorithms to extend various planar splines, such as triangular B-splines, Powell-Sabin splines, and T-splines to the manifold settings. We also highlight their modeling advantages and potentials in shape representation and analysis/synthesis through a wide array of experiments.
Suggested Citation
Miao Jin & Xianfeng Gu & Ying He & Yalin Wang, 2018.
"Geometric Modeling,"
Springer Books, in: Conformal Geometry, chapter 0, pages 135-173,
Springer.
Handle:
RePEc:spr:sprchp:978-3-319-75332-4_8
DOI: 10.1007/978-3-319-75332-4_8
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-75332-4_8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.