IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-72456-0_55.html
   My bibliography  Save this book chapter

Solving Partial Differential Equations with Multiscale Radial Basis Functions

In: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Author

Listed:
  • Holger Wendland

    (University of Bayreuth, Department of Mathematics)

Abstract

The goal of this paper is to review, discuss and extend the current theory on multiscale radial basis functions for solving elliptic partial differential equations. Multiscale radial basis functions provide approximation spaces using different scales and shifts of a compactly supported, positive definite function in an orderly fashion. In this paper, both collocation and Galerkin approximation are described and analysed. To this end, first symmetric and non-symmetric recovery is discussed. Then, error estimates for both schemes are derived, though special emphasis is given to Galerkin approximation, since the current situation here is not as clear as in the case of collocation. We will distinguish between stationary and non-stationary multiscale approximation spaces and multilevel approximation schemes. For Galerkin approximation, we will establish error bounds in the stationary setting based upon Cea’s lemma showing that the approximation spaces are indeed rich enough. Unfortunately, convergence of a simple residual correction algorithm, which is often applied in this context to compute the approximation, can only be shown for a non-stationary multiscale approximation space.

Suggested Citation

  • Holger Wendland, 2018. "Solving Partial Differential Equations with Multiscale Radial Basis Functions," Springer Books, in: Josef Dick & Frances Y. Kuo & Henryk Woźniakowski (ed.), Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan, pages 1191-1213, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-72456-0_55
    DOI: 10.1007/978-3-319-72456-0_55
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-72456-0_55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.