IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-72456-0_27.html
   My bibliography  Save this book chapter

Adaptive Quasi-Monte Carlo Methods for Cubature

In: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Author

Listed:
  • Fred J. Hickernell

    (Illinois Institute of Technology)

  • Lluís Antoni Jiménez Rugama

    (Illinois Institute of Technology)

  • Da Li

    (Illinois Institute of Technology)

Abstract

High dimensional integrals can be approximated well by quasi-Monte Carlo methods. However, determining the number of function values needed to obtain the desired accuracy is difficult without some upper bound on an appropriate semi-norm of the integrand. This challenge has motivated our recent development of theoretically justified, adaptive cubatures based on digital sequences and lattice nodeset sequences. Our adaptive cubatures are based on error bounds that depend on the discrete Fourier transforms of the integrands. These cubatures are guaranteed for integrands belonging to cones of functions whose true Fourier coefficients decay steadily, a notion that is made mathematically precise. Here we describe these new cubature rules and extend them in two directions. First, we generalize the error criterion to allow both absolute and relative error tolerances. We also demonstrate how to estimate a function of several integrals to a given tolerance. This situation arises in the computation of Sobol’ indices. Second, we describe how to use control variates in adaptive quasi-Monte cubature while appropriately estimating the control variate coefficient.

Suggested Citation

  • Fred J. Hickernell & Lluís Antoni Jiménez Rugama & Da Li, 2018. "Adaptive Quasi-Monte Carlo Methods for Cubature," Springer Books, in: Josef Dick & Frances Y. Kuo & Henryk Woźniakowski (ed.), Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan, pages 597-619, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-72456-0_27
    DOI: 10.1007/978-3-319-72456-0_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-72456-0_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.