IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-72456-0_2.html
   My bibliography  Save this book chapter

Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains

In: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Author

Listed:
  • Mark Ainsworth

    (Brown University, Division of Applied Mathematics
    Oak Ridge National Laboratory, Computer Science and Mathematics Division)

  • Christian Glusa

    (Sandia National Laboratories, Center for Computing Research
    Brown University, Division of Applied Mathematics)

Abstract

We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In particular, we develop techniques for the treatment of the dense stiffness matrix including the computation of the entries, the efficient assembly and storage of a sparse approximation and the efficient solution of the resulting equations. The main idea consists of generalising proven techniques for the treatment of boundary integral equations to general fractional orders. Importantly, the approximation does not make any strong assumptions on the shape of the underlying domain and does not rely on any special structure of the matrix that could be exploited by fast transforms. We demonstrate the flexibility and performance of this approach in a couple of two-dimensional numerical examples.

Suggested Citation

  • Mark Ainsworth & Christian Glusa, 2018. "Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains," Springer Books, in: Josef Dick & Frances Y. Kuo & Henryk Woźniakowski (ed.), Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan, pages 17-57, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-72456-0_2
    DOI: 10.1007/978-3-319-72456-0_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-72456-0_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.