IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-72456-0_12.html
   My bibliography  Save this book chapter

Multivariate Approximation in Downward Closed Polynomial Spaces

In: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Author

Listed:
  • Albert Cohen

    (Sorbonne Universités, Laboratoire Jacques-Louis Lions)

  • Giovanni Migliorati

    (Sorbonne Universités, Laboratoire Jacques-Louis Lions)

Abstract

The task of approximating a function of d variables from its evaluations at a given number of points is ubiquitous in numerical analysis and engineering applications. When d is large, this task is challenged by the so-called curse of dimensionality. As a typical example, standard polynomial spaces, such as those of total degree type, are often uneffective to reach a prescribed accuracy unless a prohibitive number of evaluations is invested. In recent years it has been shown that, for certain relevant applications, there are substantial advantages in using certain sparse polynomial spaces having anisotropic features with respect to the different variables. These applications include in particular the numerical approximation of high-dimensional parametric and stochastic partial differential equations. We start by surveying several results in this direction, with an emphasis on the numerical algorithms that are available for the construction of the approximation, in particular through interpolation or discrete least-squares fitting. All such algorithms rely on the assumption that the set of multi-indices associated with the polynomial space is downward closed. In the present paper we introduce some tools for the study of approximation in multivariate spaces under this assumption, and use them in the derivation of error bounds, sometimes independent of the dimension d, and in the development of adaptive strategies.

Suggested Citation

  • Albert Cohen & Giovanni Migliorati, 2018. "Multivariate Approximation in Downward Closed Polynomial Spaces," Springer Books, in: Josef Dick & Frances Y. Kuo & Henryk Woźniakowski (ed.), Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan, pages 233-282, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-72456-0_12
    DOI: 10.1007/978-3-319-72456-0_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-72456-0_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.