IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-65112-5_6.html
   My bibliography  Save this book chapter

Beta

In: Statistical Distributions

Author

Listed:
  • Nick T. Thomopoulos

    (Illinois Institute of Technology, Stuart School of Business)

Abstract

The beta distribution, introduced in 1895 by Karl Pearson a famous British mathematician, was originally called the Pearson type 1 distribution. The name was changed in the 1940s to the beta distribution. Thomas Bayes also applied the distribution in 1763 as a posterior distribution to the parameter of the Bernoulli distribution. The beta distribution has many shapes that range from exponential, reverse exponential, right triangular, left triangular, skew right, skew left, normal and bathtub. The only fault is that it is a bit difficult to apply to real applications. The beta has two main parameters, k1 and k2 that are both larger than zero; and two location parameters a and b that define the limits of the admissible range. When the parameters are both larger than one, the beta variable is skewed to the left or to the right. These are the most used shapes of the distribution, and for this reason, the chapter concerns mainly these shapes. The random variable is denoted here as w where (a ≤ w ≤ b). A related variable, called the standard beta, x, has a range of 0–1. The mathematical properties of the probability density are defined with the standard beta. This includes the beta function and the gamma function, which are not easy to calculate. An algorithm is listed and needs to be calculated via a computed. There is no closed form solution to the cumulative probability, and thereby, a quantitative method is shown in the chapter examples. A straightforward process is used to convert from w to x and from x to w. When sample data is available, the sample average and mode are needed to estimate the parameter values of k1 and k2. A regression fit is developed to estimate the average of x from the mode of x. When sample data is not available, best estimates of the limits (a, b) and the most-likely value of w are obtained to estimate the parameter values.

Suggested Citation

  • Nick T. Thomopoulos, 2017. "Beta," Springer Books, in: Statistical Distributions, chapter 0, pages 49-58, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-65112-5_6
    DOI: 10.1007/978-3-319-65112-5_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-65112-5_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.