IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-65112-5_2.html
   My bibliography  Save this book chapter

Continuous Uniform

In: Statistical Distributions

Author

Listed:
  • Nick T. Thomopoulos

    (Illinois Institute of Technology, Stuart School of Business)

Abstract

The continuous uniform distribution applies when the random variable can fall anywhere equally likely between two limits. The distribution is often called when an analyst does not have definitive information on the range and shape of the random variable. For example, management may estimate the time to finish a project is equally likely between 50 and 60 h. A baseball is hit for a homerun and the officials estimate the ball traveled somewhere between 410 and 430 feet. The amount of official snowfall at a location on a wintry day is predicted between 1 and 5 inches. The chapter lists the probability density, cumulative distribution, mean, variance and standard deviation of the random variable. Also described is the α-percent-point of x that identifies the value of x where the cumulative probability is α. When the parameter limit values are not known, and sample data is available, estimates of the parameter values are obtained. Two estimates are described, one by way of the maximum-likelihood method, and the other by the method-of-moments. When sample data is not available, experts are called to obtain the estimates. Often both of the limits are unknown and estimates on both are needed. Sometimes only the low limit is known, and on other occasions, only the upper limit is unknown. The way to estimate the parameter values is described for all three scenarios.

Suggested Citation

  • Nick T. Thomopoulos, 2017. "Continuous Uniform," Springer Books, in: Statistical Distributions, chapter 0, pages 13-19, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-65112-5_2
    DOI: 10.1007/978-3-319-65112-5_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-65112-5_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.