IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-65112-5_16.html
   My bibliography  Save this book chapter

Pascal

In: Statistical Distributions

Author

Listed:
  • Nick T. Thomopoulos

    (Illinois Institute of Technology, Stuart School of Business)

Abstract

Blaise Pascal, a prominent French mathematician of the 1600s, was the first to formulate the Pascal distribution. The distribution is also often referred as the negative binomial distribution. When an experiment is run whose outcome could be a success or a failure with probabilities of p and (1 − p), respectively, and the analyst is seeking k successes of the experiment, the random variable is the minimum number of fails that occur to achieve the goal of k successes. This distribution is called the Pascal distribution. Some analysts working with the Pascal are interested when the random variable is the minimum number of trials to achieve the k successes. An example is when a production facility needs to produce k successful units for a customer order and the probability of a successful unit is less than one. The number of fails till the k successful units becomes the random variable. The chapter describes how to measure the probabilities for each situation. When the probability of a success per trial is not known, sample data may be used to estimate the probability. On other occasions, no sample data is available and an approximation on the distribution is used to estimate the probability.

Suggested Citation

  • Nick T. Thomopoulos, 2017. "Pascal," Springer Books, in: Statistical Distributions, chapter 0, pages 135-141, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-65112-5_16
    DOI: 10.1007/978-3-319-65112-5_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-65112-5_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.