IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-61231-7_10.html
   My bibliography  Save this book chapter

Reuben Hersh on the Growth of Mathematical Knowledge: Kant, Geometry, and Number Theory

In: Humanizing Mathematics and its Philosophy

Author

Listed:
  • Emily Grosholz

    (Pennsylvania State University, Department of Philosophy)

Abstract

In his reflective writings about mathematics, Reuben Hersh has consistently championed a philosophy of mathematical practice. He argues that if we pay close attention to what mathematicians really do in their research, as they extend mathematical knowledge at the frontier between the known and the conjectured, we see that their work does not only involve deductive reasoning. It also includes plausible reasoning, “analytic” reasoning upward that seeks the conditions of the solvability of problems and the conditions of the intelligibility of mathematical things. We use, he argues, “our mental models of mathematical entities, which are culturally controlled to be mutually congruent within the research community. These socially controlled mental models provide the much-desired “semantics” of mathematical reasoning” (Hersh 2014b, p. 127). Every active mathematician is familiar with a large swathe of established mathematics, “an intricately interconnected web of mutually supporting concepts, which are connected both by plausible and by deductive reasoning,” that include “concepts, algorithms, theories, axiom systems, examples, conjectures and open problems,” and models and applications. Thus, “the body of established mathematics is not a fixed or static set of statements. The new and recent part is in transition” (Ibid, pp. 131–2).

Suggested Citation

  • Emily Grosholz, 2017. "Reuben Hersh on the Growth of Mathematical Knowledge: Kant, Geometry, and Number Theory," Springer Books, in: Bharath Sriraman (ed.), Humanizing Mathematics and its Philosophy, pages 97-114, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-61231-7_10
    DOI: 10.1007/978-3-319-61231-7_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-61231-7_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.