Author
Listed:
- Tim Cobler
(Fullerton College, Department of Mathematics)
- Michel L. Lapidus
(University of California, Department of Mathematics)
Abstract
Emil Artin defined a zeta function for algebraic curves over finite fields and made a conjecture about them analogous to the famous Riemann hypothesis. This and other conjectures about these zeta functions would come to be called the Weil conjectures, which were proved by Weil in the case of curves and eventually, by Deligne in the case of varieties over finite fields. Much work was done in the search for a proof of these conjectures, including the development in algebraic geometry of a Weil cohomology theory for these varieties, which uses the Frobenius operator on a finite field. The zeta function is then expressed as a determinant, allowing the properties of the function to relate to the properties of the operator. The search for a suitable cohomology theory and associated operator to prove the Riemann hypothesis has continued to this day. In this paper we study the properties of the derivative operator D = d d z $$D = \frac{d} {dz}$$ on a particular family of weighted Bergman spaces of entire functions on ℂ $$\mathbb{C}$$ . The operator D can be naturally viewed as the “infinitesimal shift of the complex plane” since it generates the group of translations of ℂ $$\mathbb{C}$$ . Furthermore, this operator is meant to be the replacement for the Frobenius operator in the general case and is used to construct an operator associated with any given meromorphic function. With this construction, we show that for a wide class of meromorphic functions, the function can be recovered by using a regularized determinant involving the operator constructed from the meromorphic function. This is illustrated in some important special cases: rational functions, zeta functions of algebraic curves (or, more generally, varieties) over finite fields, the Riemann zeta function, and culminating in a quantized version of the Hadamard factorization theorem that applies to any entire function of finite order. This shows that all of the information about the given meromorphic function is encoded into the special operator we constructed. Our construction is motivated in part by work of Herichi and the second author on the infinitesimal shift of the real line (instead of the complex plane) and the associated spectral operator, as well as by earlier work and conjectures of Deninger on the role of cohomology in analytic number theory, and a conjectural “fractal cohomology theory” envisioned in work of the second author and of Lapidus and van Frankenhuijsen on complex fractal dimensions.
Suggested Citation
Tim Cobler & Michel L. Lapidus, 2017.
"Towards a Fractal Cohomology: Spectra of Polya–Hilbert Operators, Regularized Determinants and Riemann Zeros,"
Springer Books, in: Hugh Montgomery & Ashkan Nikeghbali & Michael Th. Rassias (ed.), Exploring the Riemann Zeta Function, pages 35-65,
Springer.
Handle:
RePEc:spr:sprchp:978-3-319-59969-4_3
DOI: 10.1007/978-3-319-59969-4_3
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-59969-4_3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.