IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-59387-6_10.html
   My bibliography  Save this book chapter

Mathematical Models of Cell Clustering Due to Chemotaxis

In: Integral Methods in Science and Engineering, Volume 2

Author

Listed:
  • P. J. Harris

    (University of Brighton)

Abstract

In biological experiments small clusters of cells have been observed to move together and combine to form larger clusters of cells. These cells move by a process called chemotaxis where the cells detect a chemical signal and its gradient, and move in the direction in which the signal is increasing. A number of mathematical models for simulating the motion of cells due to chemotaxis have been proposed, ranging from simple diffusion-reaction equations for finding the density of the cells to complete simulations of how the chemical receptors on the cell membrane react to the chemical signal and cause the cell membrane to move. This work presents a simple equations of motion model to describe how the cells move which is coupled to a diffusion equation solution of how the chemical signal spreads out from individual cells. The talk will be illustrated with some typical examples.

Suggested Citation

  • P. J. Harris, 2017. "Mathematical Models of Cell Clustering Due to Chemotaxis," Springer Books, in: Christian Constanda & Matteo Dalla Riva & Pier Domenico Lamberti & Paolo Musolino (ed.), Integral Methods in Science and Engineering, Volume 2, chapter 0, pages 97-104, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-59387-6_10
    DOI: 10.1007/978-3-319-59387-6_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-59387-6_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.