IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-57072-3_39.html
   My bibliography  Save this book chapter

Mathematical Design for Knotted Textiles

In: Handbook of the Mathematics of the Arts and Sciences

Author

Listed:
  • Nithikul Nimkulrat

    (OCAD University)

  • Tuomas Nurmi

Abstract

This chapter examines the relationship between mathematics and textile knot practice, i.e., how mathematics may be adopted to characterize knotted textiles and to generate new knot designs. Two key mathematical concepts discussed are knot theory and tiling theory. First, knot theory and its connected mathematical concept, braid theory, are used to examine the mathematical properties of knotted textile structures and explore possibilities of facilitating the conceptualization, design, and production of knotted textiles. Through the application of knot diagrams, several novel two-tone knotted patterns and a new material structure can be created. Second, mathematical tiling methods, in particular the Wang tiling and the Rhombille tiling, are applied to further explore the design possibilities of new textile knot structures. Based on tiling notations generated, several two- and three-dimensional structures are created. The relationship between textile knot practice and mathematics illuminates an objective and detailed way of designing knotted textiles and communicating their creative processes. Mathematical diagrams and notations not only reveal the nature of craft knots but also stimulate new ideas, which may not have occurred otherwise.

Suggested Citation

  • Nithikul Nimkulrat & Tuomas Nurmi, 2021. "Mathematical Design for Knotted Textiles," Springer Books, in: Bharath Sriraman (ed.), Handbook of the Mathematics of the Arts and Sciences, chapter 14, pages 381-408, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-57072-3_39
    DOI: 10.1007/978-3-319-57072-3_39
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-57072-3_39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.