IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-57072-3_11.html
   My bibliography  Save this book chapter

Fractal Geometry in Architecture

In: Handbook of the Mathematics of the Arts and Sciences

Author

Listed:
  • Josephine Vaughan

    (The University of Newcastle)

  • Michael J. Ostwald

    (University of New South Wales, UNSW Built Environment)

Abstract

Fractal geometry is a product of fractal theory, a mathematical approach that describes the way space is filled by figures or objects. A fractal geometric figure is one that can be iteratively subdivided or grown in accordance with a series of rules. The overall fractal figure then has parts, which under varying levels of magnification tend to look similar – if not identical – to each other, and the figure fills more space than its topological boundaries. While pure mathematical fractal figures can be infinite in their iterations, there are examples of fractal shapes with limited scales that can be found in architecture. This chapter briefly outlines the background of fractal theory and defines fractal geometry. It then looks at the confusion surrounding the claims about fractal geometry in architecture before reviewing the way architecture and fractal geometry can be combined through inspiration, application, or algorithmic generation.

Suggested Citation

  • Josephine Vaughan & Michael J. Ostwald, 2021. "Fractal Geometry in Architecture," Springer Books, in: Bharath Sriraman (ed.), Handbook of the Mathematics of the Arts and Sciences, chapter 50, pages 1345-1360, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-57072-3_11
    DOI: 10.1007/978-3-319-57072-3_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-57072-3_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.