IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-56702-0_1.html
   My bibliography  Save this book chapter

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels

In: Tools for High Performance Computing 2016

Author

Listed:
  • Julian Hammer

    (Erlangen Regional Computing Center)

  • Jan Eitzinger

    (Erlangen Regional Computing Center)

  • Georg Hager

    (Erlangen Regional Computing Center)

  • Gerhard Wellein

    (Erlangen Regional Computing Center)

Abstract

Achieving optimal program performance requires deep insight into the interaction between hardware and software. For software developers without an in-depth background in computer architecture, understanding and fully utilizing modern architectures is close to impossible. Analytic loop performance modeling is a useful way to understand the relevant bottlenecks of code execution based on simple machine models. The Roofline Model and the Execution-Cache-Memory (ECM) model are proven approaches to performance modeling of loop nests. In comparison to the Roofline model, the ECM model can also describes the single-core performance and saturation behavior on a multicore chip.We give an introduction to the Roofline and ECM models, and to stencil performance modeling using layer conditions (LC). We then present Kerncraft, a tool that can automatically construct Roofline and ECM models for loop nests by performing the required code, data transfer, and LC analysis. The layer condition analysis allows to predict optimal spatial blocking factors for loop nests. Together with the models it enables an ab-initio estimate of the potential benefits of loop blocking optimizations and of useful block sizes. In cases where LC analysis is not easily possible, Kerncraft supports a cache simulator as a fallback option. Using a 25-point long-range stencil we demonstrate the usefulness and predictive power of the Kerncraft tool.

Suggested Citation

  • Julian Hammer & Jan Eitzinger & Georg Hager & Gerhard Wellein, 2017. "Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels," Springer Books, in: Christoph Niethammer & José Gracia & Tobias Hilbrich & Andreas Knüpfer & Michael M. Resch & Wolfgang (ed.), Tools for High Performance Computing 2016, pages 1-22, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-56702-0_1
    DOI: 10.1007/978-3-319-56702-0_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-56702-0_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.