IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-52636-2_120.html
   My bibliography  Save this book chapter

Survival Analysis II

In: Principles and Practice of Clinical Trials

Author

Listed:
  • James J. Dignam

    (The University of Chicago, Department of Public Health Sciences)

Abstract

Survival analysis modeling is integral to clinical trial analysis, as even in well-designed randomized trials where the primary inference is to be based on fundamental quantities such as estimated survival distributions and nonparametric tests, survival models offer additional insights and succinct treatment effect summaries. The ubiquitous Cox proportional hazards model has numerous variations and extensions to fit specific analytic needs and has become a mainstay of biomedical and clinical trial data analysis. However, other models and treatment effect metrics are increasingly available and should be adopted in cases where model assumptions are not met. A natural extension of survival analysis pertains to the case where multiple potential causes of failure may be in effect. When these causes of failure are mutually exclusive, then competing risks observations are encountered, while in other cases, there may be multiple failures per individual. Methods that address these extensions of time to event data are needed to (a) assess of value of treatment in the presence of events that may preclude observation of the disease process of interest, (b) evaluate risks and benefits of treatment in a way that reflects patient experience, and (c) provide tools for study of factors related to different failure types and model more complex multi-event failure processes.

Suggested Citation

  • James J. Dignam, 2022. "Survival Analysis II," Springer Books, in: Steven Piantadosi & Curtis L. Meinert (ed.), Principles and Practice of Clinical Trials, chapter 89, pages 1743-1770, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-52636-2_120
    DOI: 10.1007/978-3-319-52636-2_120
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-52636-2_120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.