IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-50986-0_7.html
   My bibliography  Save this book chapter

A Review on Dimension-Reduction Based Tests For Regressions

In: From Statistics to Mathematical Finance

Author

Listed:
  • Xu Guo

    (Beijing Normal University, School of Statistics)

  • Lixing Zhu

    (Beijing Normal University, School of Statistics
    Hong Kong Baptist University, Department of Mathematics)

Abstract

Curse of dimensionality is a big obstacle for constructing efficient goodness-of-fit tests for regression models with large or moderate number of covariates. To alleviate this difficulty, numerous efforts have been devoted in the last two decades. This review intends to collect and comment on the developments in this aspect. To make the paper self-contained, basic ideas on goodness-of-fit testing for regression models are also briefly reviewed, and the main classes of methods and their advantages and disadvantages are presented. Further, the difficulty caused by the dimensionality (number of covariates) is then discussed. The relevant dimension reduction methodologies are presented. Further, as a dedication to Stute’s 70th birthday, we also include a section to summarize his great contributions other than the results in dimension reduction-based tests.

Suggested Citation

  • Xu Guo & Lixing Zhu, 2017. "A Review on Dimension-Reduction Based Tests For Regressions," Springer Books, in: Dietmar Ferger & Wenceslao González Manteiga & Thorsten Schmidt & Jane-Ling Wang (ed.), From Statistics to Mathematical Finance, chapter 0, pages 105-125, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-50986-0_7
    DOI: 10.1007/978-3-319-50986-0_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-50986-0_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.