IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-50234-2_8.html
   My bibliography  Save this book chapter

Provisions for Outstanding Claims with Distance-Based Generalized Linear Models

In: Mathematical and Statistical Methods for Actuarial Sciences and Finance

Author

Listed:
  • Teresa Costa

    (Universitat de Barcelona, Facultat d’Economia i Empresa)

  • Eva Boj

    (Universitat de Barcelona, Facultat d’Economia i Empresa)

Abstract

In previous works we developed the formulas of the prediction error in generalized linear model (GLM) for the future payments by calendar years assuming the logarithmic link and the parametric family of error distributions named power family. In the particular case of assuming (overdispersed) Poisson and logarithmic link the GLM gives the same provision estimations as those of the Chain-Ladder deterministic method. Now, we are studying the possibility to use distance-based generalized linear models (DB-GLM) to solve the problem of claim reserving in the same way as GLM is used in this context. DB-GLM can be fitted by using the function dbglm of the dbstats package for R. In this study we calculate the prediction error associated to the accident years future payments and total payment, and also to the calendar years future payments using DB-GLM in the general case of the power families of error distributions and link functions. We make an application with the well known run-off triangle of Taylor and Ashe.

Suggested Citation

  • Teresa Costa & Eva Boj, 2017. "Provisions for Outstanding Claims with Distance-Based Generalized Linear Models," Springer Books, in: Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods for Actuarial Sciences and Finance, pages 97-108, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-50234-2_8
    DOI: 10.1007/978-3-319-50234-2_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-50234-2_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.