IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-30180-8_6.html
   My bibliography  Save this book chapter

M-Matrices over Infinite Dimensional Spaces

In: Infinite Matrices and Their Recent Applications

Author

Listed:
  • P. N. Shivakumar

    (University of Manitoba, Department of Mathematics)

  • K. C. Sivakumar

    (Indian Institute of Technology, Madras, Department of Mathematics)

  • Yang Zhang

    (University of Manitoba, Department of Mathematics)

Abstract

The intention here is to present an overview of some very recent results on three classes of operators, extending the corresponding matrix results. The relevant notions that are generalized here are that of a P-matrix, a Q-matrix, and an M-matrix. It is widely known (in the matrix case) that these notions coincide for Z-matrices. While we are not able to prove such a relationship between these classes of operators over Hilbert spaces, nevertheless, we are able to establish a relationship between Q-operators and M-operators, extending an analogous matrix result. It should be pointed out that, in any case, for P-operators, some interesting generalizations of results for P-matrices vis-a-vis invertibility of certain intervals of matrices have been obtained. These were proved by Rajesh Kannan and Sivakumar [92]. Since these are new, we include proofs for some of the important results. The last section considers a class of operators that are more general than M-operators. In particular, we review results relating to the nonnegativity of the Moore–Penrose inverse of Gram operators over Hilbert spaces, reporting the work of Kurmayya and Sivakumar [61] and Sivakumar [125]. These results find a place here is due to the reason that they extend the applicability of results for certain subclasses of M-matrices to infinite dimensional spaces.

Suggested Citation

  • P. N. Shivakumar & K. C. Sivakumar & Yang Zhang, 2016. "M-Matrices over Infinite Dimensional Spaces," Springer Books, in: Infinite Matrices and Their Recent Applications, chapter 0, pages 73-85, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-30180-8_6
    DOI: 10.1007/978-3-319-30180-8_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-30180-8_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.