IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-25826-3_14.html
   My bibliography  Save this book chapter

Generalised Partial Autocorrelations and the Mutual Information Between Past and Future

In: The Fascination of Probability, Statistics and their Applications

Author

Listed:
  • Alessandra Luati

    (University of Bologna, Department of Statistics)

  • Tommaso Proietti

    (University of Rome Tor Vergata, Department of Economics and Finance
    University of Aarhus, CREATES)

Abstract

The paper introduces the generalised partial autocorrelation (GPAC) coefficients of a stationary stochastic process. The latter are related to the generalised autocovariances, the inverse Fourier transform coefficients of a power transformation of the spectral density function. By interpreting the generalised partial autocorrelations as the partial autocorrelation coefficients of an auxiliary process, we derive their properties and relate them to essential features of the original process. Based on a parameterisation suggested by [1] and on Whittle likelihood, we develop an estimation strategy for the GPAC coefficients. We further prove that the GPAC coefficients can be used to estimate the mutual information between the past and the future of a time series.

Suggested Citation

  • Alessandra Luati & Tommaso Proietti, 2016. "Generalised Partial Autocorrelations and the Mutual Information Between Past and Future," Springer Books, in: Mark Podolskij & Robert Stelzer & Steen Thorbjørnsen & Almut E. D. Veraart (ed.), The Fascination of Probability, Statistics and their Applications, pages 303-315, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-25826-3_14
    DOI: 10.1007/978-3-319-25826-3_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-25826-3_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.