IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-25826-3_12.html
   My bibliography  Save this book chapter

Likelihood Inference for Exponential-Trawl Processes

In: The Fascination of Probability, Statistics and their Applications

Author

Listed:
  • Neil Shephard

    (Harvard University, Department of Economics)

  • Justin J. Yang

    (Harvard University, Department of Statistics)

Abstract

Integer-valued trawl processes are a class of serially correlated, stationary and infinitely divisible processes that Ole E. Barndorff-Nielsen has been working on in recent years. In this chapter, we provide the first analysis of likelihood inference for trawl processes by focusing on the so-called exponential-trawl process, which is also a continuous time hidden Markov process with countable state space. The core ideas include prediction decomposition, filtering and smoothing, complete-data analysis and EM algorithm. These can be easily scaled up to adapt to more general trawl processes but with increasing computation efforts.

Suggested Citation

  • Neil Shephard & Justin J. Yang, 2016. "Likelihood Inference for Exponential-Trawl Processes," Springer Books, in: Mark Podolskij & Robert Stelzer & Steen Thorbjørnsen & Almut E. D. Veraart (ed.), The Fascination of Probability, Statistics and their Applications, pages 251-281, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-25826-3_12
    DOI: 10.1007/978-3-319-25826-3_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-25826-3_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.