IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-25454-8_2.html
   My bibliography  Save this book chapter

Improving Weather Forecasting Accuracy by Using r-Adaptive Methods Coupled to Data Assimilation Algorithms

In: UK Success Stories in Industrial Mathematics

Author

Listed:
  • Chris Budd

    (University of Bath)

  • Mike Cullen

    (Met Office)

  • Chiara Piccolo

    (Met Office)

Abstract

Weather impacts all of our lives and we all take a close interest in it, with every news report finishing with a weather forecast watched by millions. Accurate weather forecasting is essential for the transport, agricultural and energy industries and the emergency and defence services. The Met Office plays a vital role by making 5-day forecasts, using advanced computer algorithms which combine numerical weather predictions (NWP) with carefully measured data (a process known as data assimilation). However, a major limitation on the accuracy of these forecasts is the sub-optimal use of this data. Adaptive methods, developed in a partnership between Bath and the Met Office have been employed to make better use of the data, thus improving the Met Office operational data assimilation system. This has lead to a significant improvement in forecast accuracy as measured by the UK Index [9] with great societal and economic impact. Forecasts, of surface temperatures, in particular, are pivotal for the OpenRoad forecasting system used by local authorities to plan road clearing and gritting when snow or ice are predicted.

Suggested Citation

  • Chris Budd & Mike Cullen & Chiara Piccolo, 2016. "Improving Weather Forecasting Accuracy by Using r-Adaptive Methods Coupled to Data Assimilation Algorithms," Springer Books, in: Philip J. Aston & Anthony J. Mulholland & Katherine M.M. Tant (ed.), UK Success Stories in Industrial Mathematics, edition 1, pages 11-18, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-25454-8_2
    DOI: 10.1007/978-3-319-25454-8_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-25454-8_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.