IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-23497-7_6.html
   My bibliography  Save this book chapter

Computational Modeling of miRNA Biogenesis

In: Mathematical Models in Biology

Author

Listed:
  • Brian Caffrey

    (Max Planck Institute for Molecular Genetics)

  • Annalisa Marsico

    (Max Planck Institute for Molecular Genetics)

Abstract

Over the past few years it has been observed, thanks in no small part to high-throughput methods, that a large proportion of the human genome is transcribed in a tissue- and time-specific manner. Most of the detected transcripts are non-coding RNAs and their functional consequences are not yet fully understood. Among the different classes of non-coding transcripts, microRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression. Despite great progress in understanding the biological role of miRNAs, our understanding of how miRNAs are regulated and processed is still developing. High-throughput sequencing data have provided a robust platform for transcriptome-level, as well as gene-promoter analyses. In silico predictive models help shed light on the transcriptional and post-transcriptional regulation of miRNAs, including their role in gene regulatory networks. Here we discuss the advances in computational methods that model different aspects of miRNA biogeneis, from transcriptional regulation to post-transcriptional processing. In particular, we show how the predicted miRNA promoters from PROmiRNA, a miRNA promoter prediction tool, can be used to identify the most probable regulatory factors for a miRNA in a specific tissue. As differential miRNA post-transcriptional processing also affects gene-regulatory networks, especially in diseases like cancer, we also describe a statistical model proposed in the literature to predict efficient miRNA processing from sequence features.

Suggested Citation

  • Brian Caffrey & Annalisa Marsico, 2015. "Computational Modeling of miRNA Biogenesis," Springer Books, in: Valeria Zazzu & Maria Brigida Ferraro & Mario R. Guarracino (ed.), Mathematical Models in Biology, edition 1, pages 85-98, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-23497-7_6
    DOI: 10.1007/978-3-319-23497-7_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-23497-7_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.