IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-18275-9_15.html
   My bibliography  Save this book chapter

Advanced Truncated Differential Attacks Against GOST Block Cipher and Its Variants

In: Computation, Cryptography, and Network Security

Author

Listed:
  • Theodosis Mourouzis

    (University College London)

  • Nicolas Courtois

    (University College London)

Abstract

GOST block cipher, defined in the GOST 28147-89 standard, is a well-known 256-bit symmetric cipher that operates on 64-bit blocks. The 256-bit level security can be even more increased by keeping the specifications of the S-boxes secret. GOST is implemented in many standard libraries such as OpenSSL and it has extremely low implementation cost and as a result of this it could be considered as a plausible alternative for AES-256 and 3-DES. Furthermore, nothing seemed to threaten its high 256-bit security [CHES 2010] and in 2010 it was submitted to ISO 18033-3 to become a worldwide industrial standard. During the period of submission many new attacks of different types were presented by the cryptographic communities against full 32-rounds of GOST. We have algebraic complexity reduction attacks, advanced differential attacks, attacks using reflection property, and many others. However, all of these attacks were against the version of GOST which uses the standard set of S-boxes. In this paper, we study the security of many variants of GOST against advanced forms of differential attacks which are based on truncated differentials techniques. In particular we present an attack against full GOST for the variant of GOST which is supposed to be the strongest one and uses the set of S-boxes proposed in ISO 18033-3. Our attack is of Depth-First key search style constructed by solving several underlying optimization problems and has time complexity 2245. 4 and 264 memory and data complexity. It is very interesting to note that this attack is unoptimized with respect to several aspects and can be immediately improved by discovering more efficient ad-hoc heuristics which could eventually lead to the discovery of better truncated differential properties.

Suggested Citation

  • Theodosis Mourouzis & Nicolas Courtois, 2015. "Advanced Truncated Differential Attacks Against GOST Block Cipher and Its Variants," Springer Books, in: Nicholas J. Daras & Michael Th. Rassias (ed.), Computation, Cryptography, and Network Security, pages 351-380, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-18275-9_15
    DOI: 10.1007/978-3-319-18275-9_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-18275-9_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.