IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-16727-5_28.html
   My bibliography  Save this book chapter

Retinal Image Quality Assessment Using Shearlet Transform

In: Integral Methods in Science and Engineering

Author

Listed:
  • E. Imani

    (Ferdowsi University of Mashhad)

  • H. R. Pourreza

    (Ferdowsi University of Mashhad)

  • T. Banaee

    (Mashhad University of Medical Sciences)

Abstract

In the context of eye-related diseases such as diabetic retinopathy (DR), retinal image quality assessment is used for evaluating the quality of an image based on its usefulness in detecting a certain condition or disease. Since poor quality retinal images make the detection process more difficult, it is necessary to assess the quality of retinal images before disease detection. Retinal image quality grading evaluates if the quality of an image is sufficient to allow diagnosis procedure to be applied. Automation of this process would help reduce the cost associated with trained graders and remove the issue of inconsistency introduced by manual grading. In this paper, we present a new method for automatic assessment of retinal image quality. The proposed method is based on shearlet transform which is a new multi-scale and time-frequency image analysis method. In addition to multi-resolution and time-frequency localization provided by traditional wavelet transform, the shearlet transform also provides directionality and anisotropy. We use the statistical features of shearlet coefficients to assess the quality of retinal images. Using SVM classifier, the performance of the proposed method was evaluated on two datasets. Experimental results demonstrate an excellent performance in comparison with other methods reported recently.

Suggested Citation

  • E. Imani & H. R. Pourreza & T. Banaee, 2015. "Retinal Image Quality Assessment Using Shearlet Transform," Springer Books, in: Christian Constanda & Andreas Kirsch (ed.), Integral Methods in Science and Engineering, edition 1, chapter 0, pages 329-339, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-16727-5_28
    DOI: 10.1007/978-3-319-16727-5_28
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-16727-5_28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.