IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-15260-8_21.html
   My bibliography  Save this book chapter

Discrete Input/Output Maps and their Relation to Proper Orthogonal Decomposition

In: Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory

Author

Listed:
  • Manuel Baumann

    (Delft Institute of Applied Mathematics, Faculty EWI)

  • Jan Heiland

    (Max Planck Institute for Dynamics of Complex Technical Systems)

  • Michael Schmidt

    (University of Applied Sciences Offenburg)

Abstract

Current control design techniques require system models of moderate size to be applicable. The generation of such models is challenging for complex systems which are typically described by partial differential equations (PDEs), and model-order reduction or low-order-modeling techniques have been developed for this purpose. Many of them heavily rely on the state space models and their discretizations. However, in control applications, a sufficient accuracy of the models with respect to their input/output (I/O) behavior is typically more relevant than the accurate representation of the system states. Therefore, a discretization framework has been developed and is discussed here, which heavily focuses on the I/O map of the original PDE system and its direct discretization in the form of an I/O matrix and with error bounds measuring the relevant I/O error. We also discuss an SVD-based dimension reduction for the matrix representation of an I/O map and how it can be interpreted in terms of the Proper Orthogonal Decomposition (POD) method which gives rise to a more general POD approach in time capturing. We present numerical examples for both, reduced I/O map s and generalized POD.

Suggested Citation

  • Manuel Baumann & Jan Heiland & Michael Schmidt, 2015. "Discrete Input/Output Maps and their Relation to Proper Orthogonal Decomposition," Springer Books, in: Peter Benner & Matthias Bollhöfer & Daniel Kressner & Christian Mehl & Tatjana Stykel (ed.), Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory, edition 127, chapter 0, pages 585-608, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-15260-8_21
    DOI: 10.1007/978-3-319-15260-8_21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-15260-8_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.