IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12442-1_12.html
   My bibliography  Save this book chapter

A Cramér–von Mises Test for Gaussian Processes

In: Mathematical Statistics and Limit Theorems

Author

Listed:
  • Gennady Martynov

    (Kharkevich Institute for Information Transmission Problems
    Higher School of Economics)

Abstract

We propose a statistical method for testing the null hypothesis that an observed random process on the interval $$[0,1]$$ [ 0 , 1 ] is a mean zero Gaussian process with specified covariance function. Our method is based on a finite number of observations of the process. To test this null hypothesis, we develop a Cramér–von Mises test based on an infinite-dimensional analogue of the empirical process. We also provide a method for computing the critical values of our test statistic. The same theory also applies to the problem of testing multivariate uniformity over a high-dimensional hypercube. This investigation is based upon previous joint work by Paul Deheuvels and the author.

Suggested Citation

  • Gennady Martynov, 2015. "A Cramér–von Mises Test for Gaussian Processes," Springer Books, in: Marc Hallin & David M. Mason & Dietmar Pfeifer & Josef G. Steinebach (ed.), Mathematical Statistics and Limit Theorems, edition 127, pages 209-229, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12442-1_12
    DOI: 10.1007/978-3-319-12442-1_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12442-1_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.