IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_69.html
   My bibliography  Save this book chapter

Bayesian Cubic Spline in Computer Experiments

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Yijie Dylan Wang

    (Blizzard Entertainment)

  • C. F. Jeff Wu

    (Georgia Institute of Technology, H. Milton Stewart School of Industrial and Systems Engineering)

Abstract

Cubic splines are commonly used in numerical analysis. It has also become popular in the analysis of computer experiments, thanks to its adoption by the software JMP 8.0.2 2010. In this chapter, a Bayesian version of the cubic spline method is proposed, in which the random function that represents prior uncertainty about y is taken to be a specific stationary Gaussian process and y is the output of the computer experiment. A Markov chain Monte Carlo (MCMC) procedure is developed for updating the prior given the observed y values. Simulation examples and a real data application are given to show that the proposed Bayesian method performs better than the frequentist cubic spline method and the standard method based on the Gaussian correlation function.

Suggested Citation

  • Yijie Dylan Wang & C. F. Jeff Wu, 2017. "Bayesian Cubic Spline in Computer Experiments," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 12, pages 477-495, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_69
    DOI: 10.1007/978-3-319-12385-1_69
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.