IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_65.html
   My bibliography  Save this book chapter

Multi-response Approach to Improving Identifiability in Model Calibration

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Zhen Jiang

    (Northwestern University, Department of Mechanical Engineering)

  • Paul D. Arendt

    (CNA Financial Corporation)

  • Daniel W. Apley

    (Northwestern University, Department of Industrial Engineering and Management Sciences)

  • Wei Chen

    (Northwestern University, Department of Mechanical Engineering)

Abstract

In physics-based engineering modeling, two primary sources of model uncertainty that account for the differences between computer models and physical experiments are parameter uncertainty and model discrepancy. One of the main challenges in model updating results from the difficulty in distinguishing between the effects of calibration parameters versus model discrepancy. In this chapter, this identifiability problem is illustrated with several examples that explain the mechanisms behind it and that attempt to shed light on when a system may or may not be identifiable. For situations in which identifiability cannot be achieved using only a single response, an approach is developed to improve identifiability by using multiple responses that share a mutual dependence on the calibration parameters. Furthermore, prior to conducting physical experiments but after conducting computer simulations, in order to address the issue of how to select the most appropriate set of responses to measure experimentally to best enhance identifiability, a preposterior analysis approach is presented to predict the degree of identifiability that will result from using different sets of responses to measure experimentally. To handle the computational challenges of the preposterior analysis, we also present a surrogate preposterior analysis based on the Fisher information of the calibration parameters.

Suggested Citation

  • Zhen Jiang & Paul D. Arendt & Daniel W. Apley & Wei Chen, 2017. "Multi-response Approach to Improving Identifiability in Model Calibration," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 4, pages 69-127, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_65
    DOI: 10.1007/978-3-319-12385-1_65
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.