IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_55.html
   My bibliography  Save this book chapter

Embedded Uncertainty Quantification Methods via Stokhos

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Eric T. Phipps

    (Center for Computing Research, Sandia National Laboratories)

  • Andrew G. Salinger

    (Center for Computing Research, Sandia National Laboratories)

Abstract

Stokhos (Phipps, Stokhos embedded uncertainty quantification methods. http://trilinos.org/packages/stokhos/ , 2015) is a package within Trilinos (Heroux et al., ACM Trans Math Softw 31(3), 2005; Michael et al., Sci Program 20(2):83–88, 2012) that enables embedded or intrusive uncertainty quantification capabilities to C++ codes. It provides tools for implementing stochastic Galerkin methods Stochastic Galerkin methods and embedded sample propagation through the use of template-based generic programming (Pawlowski et al., Sci Program 20:197–219, 2012; Roger et al., Sci Program 20:327–345, 2012) which allows deterministic simulation codes to be easily modified for embedded uncertainty quantification. It provides tools for forming and solving the resulting linear and nonlinear equations these methods generate, leveraging the large-scale linear and nonlinear solver capabilities provided by Trilinos. Furthermore, Stokhos is integrated with the emerging many-core architecture capabilities provided by the Kokkos (Edwards et al., Sci Program 20(2):89–114, 2012; Edwards et al., J Parallel Distrib Comput 74(12):3202–3216, 2014) and Tpetra packages (Baker and Heroux, Sci Program 20(2):115–128, 2012; Hoemmen et al., Tpetra: next-generation distributed linear algebra. http://trilinos.org/packages/tpetra , 2015) within Trilinos, allowing these embedded uncertainty quantification capabilities to be applied in both shared and distributed memory parallel computational environments. Finally, the Stokhos tools have been incorporated into the Albany simulation code (Pawlowski et al., Sci Program 20:327–345, 2012; Salinger et al., Albany multiphysics simulation code. https://github.com/gahansen/Albany , 2015) enabling embedded uncertainty quantification of a wide variety of large-scale PDE-based simulations.

Suggested Citation

  • Eric T. Phipps & Andrew G. Salinger, 2017. "Embedded Uncertainty Quantification Methods via Stokhos," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 52, pages 1765-1806, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_55
    DOI: 10.1007/978-3-319-12385-1_55
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.