IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_41.html
   My bibliography  Save this book chapter

Decision Analytic and Bayesian Uncertainty Quantification for Decision Support

In: Handbook of Uncertainty Quantification

Author

Listed:
  • D. Warner North

    (NorthWorks)

Abstract

This essay introduces probability in support of decision-making, as a state of mind and not of things. Probability provides a framework for reasoning coherently about uncertainty. According to Cox’s theorem, it is the only way to reason coherently about uncertainty. Probability summarizes states of information. A basic desideratum is that states of information judged equivalent should lead to the same probability distributions. Some widely used probabilistic models have both sufficient statistics and maximum entropy characterizations. In practice, outside of certain physics and engineering applications, human judgment is usually needed to quantify uncertainty as probabilities. Reality is highly complex, but one can test judgments against what is known, drawing upon many specialized areas of human knowledge. Sensitivity analysis can evaluate the importance of multiple uncertainties in a decision context. When the choice between alternatives is close, what is the value of further information (VOI)? Important concepts discussed in this chapter are the expected value of perfect information and the expected value of further experimental testing. Practical application is illustrated in two case studies. The first involves assessing the probability for replication of a terrestrial microbe on Mars, in the decision context of a constraint on planetary exploration. The second involves weather modification of hurricanes/typhoons: whether to deploy this technology to reduce damage from hurricanes impacting US coastal areas and valuing experimental testing offshore. The decision context is that of a natural disaster turned political by deployment of new technology where such deployment might be followed by a reduction, or by an increase, in adverse impacts, compared to not deploying the technology. Decision support should be viewed as an iterative process of working with those with decision responsibility and with experts who are the best available sources of information. The decision support process includes characterizing uncertainties and values for outcomes in the context of a choice among decision alternatives. Sensitivity analysis and VOI can give insight on whether to act now or to seek more information and more refined analysis. In a public policy decision context, the process can facilitate stakeholders sharing and critiquing information as the basis for characterizing uncertainties and learning which uncertainties and value judgments are most important for decisions.

Suggested Citation

  • D. Warner North, 2017. "Decision Analytic and Bayesian Uncertainty Quantification for Decision Support," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 40, pages 1361-1399, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_41
    DOI: 10.1007/978-3-319-12385-1_41
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.