IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_30.html
   My bibliography  Save this book chapter

Random Vectors and Random Fields in High Dimension: Parametric Model-Based Representation, Identification from Data, and Inverse Problems

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Christian Soize

    (Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle (MSME))

Abstract

The statistical inverse problem for the experimental identification of a non-Gaussian matrix-valued random field, that is, the model parameter of a boundary value problem, using some partial and limited experimental data related to a model observation, is a very difficult and challenging problem. A complete advanced methodology and the associated tools are presented for solving such a problem in the following framework: the random field that must be identified is a non-Gaussian matrix-valued random field and is not simply a real-valued random field; this non-Gaussian random field is in high stochastic dimension and is identified in a general class of random fields; some fundamental algebraic properties of this non-Gaussian random field must be satisfied such as symmetry, positiveness, invertibility in mean square, boundedness, symmetry class, spatial-correlation lengths, etc.; and the available experimental data sets correspond only to partial and limited data for a model observation of the boundary value problem. The developments presented are mainly related to the elasticity framework, but the methodology is general and can be used in many areas of computational sciences and engineering. The developments are organized as follows. The first part is devoted to the definition of the statistical inverse problem that has to be solved in high stochastic dimension and is focussed on stochastic elliptic operators such that the ones that are encountered in the boundary value problems of the linear elasticity. The second one deals with the construction of two possible parameterized representations for a non-Gaussian positive-definite matrix-valued random field that models the model parameter of a boundary value problem. A parametric model-based representation is then constructed in introducing a statistical reduced model and a polynomial chaos expansion, first with deterministic coefficients and after with random coefficients. This parametric model-based representation is directly used for solving the statistical inverse problem. The third part is devoted to the description of all the steps of the methodology allowing the statistical inverse problem to be solved in high stochastic dimension. These steps are based on the identification of a prior stochastic model of the Non-Gaussian random field by using the maximum likelihood method and then, on the identification of a posterior stochastic model of the Non-Gaussian random field by using the Bayes method. The fourth part presents the construction of an algebraic prior stochastic model of the model parameter of the boundary value problem, for a non-Gaussian matrix-valued random field. The generator of realizations for such an algebraic prior stochastic model for a non-Gaussian matrix-valued random field is presented.

Suggested Citation

  • Christian Soize, 2017. "Random Vectors and Random Fields in High Dimension: Parametric Model-Based Representation, Identification from Data, and Inverse Problems," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 26, pages 883-935, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_30
    DOI: 10.1007/978-3-319-12385-1_30
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.