Author
Listed:
- Daniele Venturi
(University of California Santa Cruz, Department of Applied Mathematics and Statistics)
- Heyrim Cho
(University of Maryland, Department of Mathematics)
- George Em Karniadakis
(Brown University, Division of Applied Mathematics)
Abstract
Determining the statistical properties of nonlinear random systems is a problem of major interest in many areas of physics and engineering. Even with recent theoretical and computational advancements, no broadly applicable technique has yet been developed for dealing with the challenging problems of high dimensionality, low regularity and random frequencies often exhibited by the system. The Mori-Zwanzig and the effective propagator approaches discussed in this chapter have the potential of overcoming some of these limitations, in particular the curse of dimensionality and the lack of regularity. The key idea stems from techniques of irreversible statistical mechanics, and it relies on developing exact evolution equations and corresponding numerical methods for quantities of interest, e.g., functionals of the solution to stochastic ordinary and partial differential equations. Such quantities of interest could be low-dimensional objects in infinite-dimensional phase spaces, e.g., the lift of an airfoil in a turbulent flow, the local displacement of a structure subject to random loads (e.g., ocean waves loading on an offshore platform), or the macroscopic properties of materials with random microstructure (e.g., modeled atomistically in terms of particles). We develop the goal-oriented framework in two different, although related, mathematical settings: the first one is based on the Mori-Zwanzig projection operator method, and it yields exact reduced-order equations for the quantity of interest. The second approach relies on effective propagators, i.e., integrals of exponential operators with respect to suitable distributions. Both methods can be applied to nonlinear systems of stochastic ordinary and partial differential equations subject to random forcing terms, random boundary conditions, or random initial conditions.
Suggested Citation
Daniele Venturi & Heyrim Cho & George Em Karniadakis, 2017.
"Mori-Zwanzig Approach to Uncertainty Quantification,"
Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 29, pages 1037-1073,
Springer.
Handle:
RePEc:spr:sprchp:978-3-319-12385-1_28
DOI: 10.1007/978-3-319-12385-1_28
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_28. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.