IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_27.html
   My bibliography  Save this book chapter

Method of Distributions for Uncertainty Quantification

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Daniel M. Tartakovsky

    (University of California, San Diego, Department of Mechanical and Aerospace Engineering)

  • Pierre A. Gremaud

    (North Carolina State University, Department of Mathematics)

Abstract

Parametric uncertainty, considered broadly to include uncertainty in system parameters and driving forces (source terms and initial and boundary conditions), is ubiquitous in mathematical modeling. The method of distributions, which comprises PDF and CDF methods, quantifies parametric uncertainty by deriving deterministic equations for either probability density function (PDF) or cumulative distribution function (CDF) of model outputs. Since it does not rely on finite-term approximations (e.g., a truncated Karhunen-Loève transformation) of random parameter fields, the method of distributions does not suffer from the “curse of dimensionality.” On the contrary, it is exact for a class of nonlinear hyperbolic equations whose coefficients lack spatiotemporal correlation, i.e., exhibit an infinite number of random dimensions.

Suggested Citation

  • Daniel M. Tartakovsky & Pierre A. Gremaud, 2017. "Method of Distributions for Uncertainty Quantification," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 22, pages 763-783, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_27
    DOI: 10.1007/978-3-319-12385-1_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.