IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_21.html
   My bibliography  Save this book chapter

Low-Rank Tensor Methods for Model Order Reduction

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Anthony Nouy

    (GeM, Ecole Centrale Nantes, Department of Computer Science and Mathematics)

Abstract

Parameter-dependent models arise in many contexts such as uncertainty quantification, sensitivity analysis, inverse problems, or optimization. Parametric or uncertainty analyses usually require the evaluation of an output of a model for many instances of the input parameters, which may be intractable for complex numerical models. A possible remedy consists in replacing the model by an approximate model with reduced complexity (a so-called reduced order model) allowing a fast evaluation of output variables of interest. This chapter provides an overview of low-rank methods for the approximation of functions that are identified either with order-two tensors (for vector-valued functions) or higher-order tensors (for multivariate functions). Different approaches are presented for the computation of low-rank approximations, either based on samples of the function or on the equations that are satisfied by the function, the latter approaches including projection-based model order reduction methods. For multivariate functions, different notions of ranks and the corresponding low-rank approximation formats are introduced.

Suggested Citation

  • Anthony Nouy, 2017. "Low-Rank Tensor Methods for Model Order Reduction," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 25, pages 857-882, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_21
    DOI: 10.1007/978-3-319-12385-1_21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.