IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_20.html
   My bibliography  Save this book chapter

Solution Algorithms for Stochastic Galerkin Discretizations of Differential Equations with Random Data

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Howard Elman

    (University of Maryland, Department of Computer Science and Institute for Advanced Computer Studies)

Abstract

This chapter discusses algorithms for solving systems of algebraic equations arising from stochastic Galerkin discretization of partial differential equations with random data, using the stochastic diffusion equation as a model problem. For problems in which uncertain coefficients in the differential operator are linear functions of random parameters, a variety of efficient algorithms of multigrid and multilevel type are presented, and, where possible, analytic bounds on convergence of these methods are derived. Some limitations of these approaches for problems that have nonlinear dependence on parameters are outlined, but for one example of such a problem, the diffusion equation with a diffusion coefficient that has exponential structure, a strategy is described for which the reformulated problem is also amenable to efficient solution by multigrid methods.

Suggested Citation

  • Howard Elman, 2017. "Solution Algorithms for Stochastic Galerkin Discretizations of Differential Equations with Random Data," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 16, pages 601-616, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_20
    DOI: 10.1007/978-3-319-12385-1_20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.