IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_16.html
   My bibliography  Save this book chapter

Bayesian Uncertainty Propagation Using Gaussian Processes

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Ilias Bilionis

    (Purdue University, School of Mechanical Engineering)

  • Nicholas Zabaras

    (University of Warwick, Warwick Centre for Predictive Modelling)

Abstract

Classic non-intrusive uncertainty propagation techniques, typically, require a significant number of model evaluations in order to yield convergent statistics. In practice, however, the computational complexity of the underlying computer codes limits significantly the number of observations that one can actually make. In such situations the estimates produced by classic approaches cannot be trusted since the limited number of observations induces additional epistemic uncertainty. The goal of this chapter is to highlight how the Bayesian formalism can quantify this epistemic uncertainty and provide robust predictive intervals for the statistics of interest with as few simulations as one has available. It is shown how the Bayesian formalism can be materialized by employing the concept of a Gaussian process (GP). In addition, several practical aspects that depend on the nature of the underlying response surface, such as the treatment of spatiotemporal variation, and multi-output responses are discussed. The practicality of the approach is demonstrated by propagating uncertainty through a dynamical system and an elliptic partial differential equation.

Suggested Citation

  • Ilias Bilionis & Nicholas Zabaras, 2017. "Bayesian Uncertainty Propagation Using Gaussian Processes," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 15, pages 555-599, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_16
    DOI: 10.1007/978-3-319-12385-1_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.