IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-12385-1_13.html
   My bibliography  Save this book chapter

Polynomial Chaos: Modeling, Estimation, and Approximation

In: Handbook of Uncertainty Quantification

Author

Listed:
  • Roger Ghanem

    (University of Southern California, Department of Civil and Environmental Engineering)

  • John Red-Horse

    (Sandia National Laboratories, Engineering Sciences Center)

Abstract

Polynomial chaos decompositions (PCE) have emerged over the past three decades as a standard among the many tools for uncertainty quantification. They provide a rich mathematical structure that is particularly well suited to enabling probabilistic assessments in situations where interdependencies between physical processes or between spatiotemporal scales of observables constitute credible constraints on system-level predictability. Algorithmic developments exploiting their structural simplicity have permitted the adaptation of PCE to many of the challenges currently facing prediction science. These include requirements for large-scale high-resolution computational simulations implicit in modern applications, non-Gaussian probabilistic models, and non-smooth dependencies and for handling general vector-valued stochastic processes. This chapter presents an overview of polynomial chaos that underscores their relevance to problems of constructing and estimating probabilistic models, propagating them through arbitrarily complex computational representations of underlying physical mechanisms, and updating the models and their predictions as additional constraints become known.

Suggested Citation

  • Roger Ghanem & John Red-Horse, 2017. "Polynomial Chaos: Modeling, Estimation, and Approximation," Springer Books, in: Roger Ghanem & David Higdon & Houman Owhadi (ed.), Handbook of Uncertainty Quantification, chapter 14, pages 521-551, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-12385-1_13
    DOI: 10.1007/978-3-319-12385-1_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-12385-1_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.